ON SPERNER FAMILIES IN WHICH NO k SETS HAVE AN EMPTY INTERSECTION III

H.-D. O. F. GRONAU

Received 10 May 1980

Let R be an r-element set and \mathscr{F} be a Sperner family of its subsets, that is, $X \subseteq Y$ for all different $X, Y \in \mathscr{F}$. The maximum cardinality of \mathscr{F} is determined under the conditions 1) c = |X| = d for all $X \in \mathscr{F}$, (c and d are fixed integers) and 2) no k sets ($k \ge 4$, fixed integer) in \mathscr{F} have an empty intersection. The result is mainly based on a theorem which is proved by induction, simultaneously with a theorem of Frankl.

1. Introduction and results

A Sperner family $\mathcal{F} = \{X_1, X_2, ..., X_n\}$ is a set of subsets of $R = \{1, 2, ..., r\}$ $(r \ge 2)$ such that none of the subsets contains another one. Let $k \ge 3$ be an integer. $|\mathcal{F}|$ denotes the cardinality of \mathcal{F} while |X| denotes the cardinality of X.

 $\mathfrak{G}(r,k)$ denotes the set of all Sperner families \mathscr{F} on R satisfying $\bigcup_{i,j} X_{i,j} \neq R$ for all integers $i_1, i_2, ..., i_k$ with $1 \le i_1 < i_2 < ... < i_k \le n$. Let c and d be integers satisfying $0 \le c \le d \le r$.

Let $\mathfrak{G}_{c,d}(r,k) = \{ \mathscr{F} : \mathscr{F} \in \mathfrak{G}(r,k), c \leq |X| \leq d \text{ for all } X \in \mathscr{F} \}$. Finally let $n_{c,d}(r,k) = \max \{ |\mathscr{F}| : \mathscr{F} \in \mathfrak{G}_{c,d}(r,k) \}$ if $\mathfrak{G}_{c,d}(r,k) \neq \emptyset$.

$$\mathcal{F} = \{X_1, X_2, ..., X_n\} \in \mathfrak{G}_{c,d}(r, k)$$
 holds if and only if

$$\mathcal{F}' = \{R \setminus X_1, R \setminus X_2, ..., R \setminus X_n\}$$

is a Sperner family on R in which no k sets have an empty intersection, where $r-d \le$ $\leq |X| \leq r-c$ for all $X \in \mathcal{F}'$. In this way we obtain analogous results for Sperner families in which no k sets have an empty intersection.

 $n_{0,r}(r,k)$ and $n_{c,d}(r,3)$ were studied in a paper by Frankl [5] and several papers by the author [9], [10] and [11].

In the present paper we will consider $n_{c,d}(r,k)$ with $k \ge 4$. For some values of c and d it is fairly easy to determine $n_{c,d}(r,k)$. We formulate these results in the following propositions. They are easy consequences of the results of the papers mentioned above.

Proposition 1 ([9], Lemma 1). $\mathfrak{G}_{c,d}(r,k)\neq\emptyset$ (i.e. $n_{c,d}(r,k)$ exists) if and only if $c\leq r-1$.

Proposition 2 ([5], Theorem 1).

$$n_{c,d}(r,k) = \begin{cases} \binom{r-1}{c} & \text{if} \quad c > \frac{r-1}{2}, \\ \binom{r-1}{[(r-1)/2]} & \text{if} \quad d \ge \frac{r-1}{2} \ge c \ge \frac{r}{k}, \\ \binom{r-1}{d} & \text{if} \quad \frac{r-1}{2} > d \ge c \ge \frac{r}{k}. \end{cases}$$

Proposition 3

$$n_{c,d}(r,k) = \begin{pmatrix} r \\ d \end{pmatrix}$$
 if $\frac{r-1}{k} \ge d$.

 $n_{0,r}(r,k) = {r-1 \choose [(r-1)/2]}, \ k \ge 4$, was proved in Gronau [9]. Since $n_{c,d}(r,k) \le n_{0,r}(r,k)$ we have immediately

Proposition 4

$$n_{c,d}(r,k) = \left[\begin{bmatrix} r-1 \\ \frac{r-1}{2} \end{bmatrix} \right] \quad if \quad d \ge \left[\frac{r-1}{2} \right], \quad \frac{r}{k} \ge c.$$

The real problem, which we will solve in the present paper, is $\frac{r-1}{2} > d \ge \frac{r}{k} > c$.

Theorem 1. Let $\frac{r-1}{2} > d \ge \frac{r-1}{k-1}$ and $\frac{r}{k} > c$. Then

$$n_{c,d}(r,k) = \binom{r-1}{d}$$

for $r \ge r_0(k)$ (e.g. $r_0(k) = 7k(k-1)+1$).

Theorem 2. Let $\frac{r-1}{k-1} > d \ge \frac{r}{k} > c$. Then

$$n_{c,d}(r,k) = \begin{cases} \binom{r-1}{d} + \binom{r-1}{r-(k-1)d-2} & if \quad c \leq r-(k-1)d-1, \\ \binom{r-1}{d} & if \quad c \geq r-(k-1)d, \end{cases}$$

where
$$d = \frac{r-1}{k-1+\varepsilon}$$
 with fixed ε , $0 < \varepsilon < 1$ and $r \ge r_0(k, \varepsilon) \left(e.g. \ r_0(k, \varepsilon) = \left(\frac{5k^2}{1-\varepsilon}\right)^2 + 1\right)$.

One of the basic results on Sperner families in which no k sets have the union R (or an empty intersection) is the following generalization of the Erdős—Ko—Rado-Theorem [4] which is due to Frankl [5].

Theorem 3. Let $k \ge 2$ and let $d \ge \frac{r}{k}$. Then

$$n_{d,d}(r,k) = \binom{r-1}{d}.$$

We will give a very simple proof of this result using the following theorem which is a generalization of a theorem of the author, presented in [10].

Theorem 4. Let r, d, s, k be given integers, satisfying $k \ge 2$, $r \ge s \ge d$, $k \cdot d \ge s$. If \mathscr{F} is a family of d-element subsets of R, let $\mathscr{G}^*_{s,d}(\mathscr{F})$ be the family of those s-element subsets of R which are unions of at most k sets of \mathscr{F} . Then

$$|\mathcal{G}_{s,d}^*(\mathcal{F})| \ge {r-1 \choose s-1} \left\{ \frac{r-d}{d} \frac{|\mathcal{F}|}{{r-1 \choose d}} + \frac{r}{s} - \frac{r}{d} \right\}.$$

Remark. $\mathscr{G}^*_{s,d}(\mathscr{F})$, in fact depends on k too, but since $|\mathscr{G}^*_{s,d,k+1})\mathscr{F}\rangle| \geq |\mathscr{G}^*_{s,d,k}(\mathscr{F})|$ we may take $\mathscr{G}^*_{s,d}(\mathscr{F})$ for the smallest k with $k \cdot d \geq s$ and have in this way a lower bound for all \mathscr{G}^* 's.

Corollary 1. If
$$|\mathscr{F}| = {r \choose d}$$
, then $|\mathscr{G}_{s,d}^*(\mathscr{F})| = {r \choose s}$.

Corollary 2. If
$$|\mathscr{F}| \ge {r-1 \choose d}$$
, then $|\mathscr{G}_{s,d}^*(\mathscr{F})| \ge {r-1 \choose s}$.

We notice that there is a family \mathscr{F} with $|\mathscr{F}| = {r-1 \choose d}$ and $|\mathscr{G}_{s,d}^*(\mathscr{F})| = {r-1 \choose s}$. e.g. $\mathscr{F} = \{X : X \subseteq R, |X| = d, r \notin X\}$.

Corollary 3. If
$$|\mathcal{F}| > \frac{s-d}{s} \binom{r}{d}$$
, then $|\mathcal{G}_{s,d}^*(\mathcal{F})| \ge 1$.

Theorem 4 was successfully used in solving a similar problem by Gronau [12].

In section 2 we will present some necessary background results. In section 3 we will prove theorems 3 and 4, while in section 4 and 5 theorems 1 and 2, respectively, will be proved.

2. Background results

If \mathscr{F} is a family of subsets of R, then \mathscr{F}_i (i=0, 1, ..., r) denotes the family of sets belonging to \mathscr{F} and having cardinality i, while the parameters $p_0, p_1, ..., p_r$ of \mathscr{F} are the numbers of sets in $\mathscr{F}_0, \mathscr{F}_1, ..., \mathscr{F}_r$, respectively.

of \mathscr{F} are the numbers of sets in $\mathscr{F}_0, \mathscr{F}_1, ..., \mathscr{F}_r$, respectively.

Let $p_0, p_1, ..., p_r$ be the parameters of a Sperner family on R. Lubell [16], Meshalkin [17] and Yamamoto [19] proved the following inequality

$$\sum_{v=0}^{r} \frac{p_v}{\binom{r}{v}} \leq 1,$$

which is called the LYM inequality.

Let $\Delta \mathscr{F} = \{X: X \subseteq R, X = Y \setminus \{v\} \text{ for some } Y \in \mathscr{F} \text{ and some } v \in Y\}$. If $|\mathscr{F}_i| \le \binom{s}{i}$, then from the Kruskal-Katona-Theorem [14], [15] we have

$$|\Delta \mathscr{F}_i| \ge rac{{s\choose i-1}}{{s\choose i}} |\mathscr{F}_i|.$$

3. Proofs of theorems 3 and 4

3.1. If k=2, then Theorem 3 is the original Erdős—Ko—Rado-Theorem [4] (in the dual form).

We will prove both theorems jointly by induction on k. If Theorem 3 is proved for certain k, we imply the statement of Theorem 4 for this k and then we prove Theorem 3 for k+1.

3.2. Let Theorem 3 be proved for a certain $k \ (\ge 2)$. Let us consider

$$\overline{\mathscr{F}} = \{X \colon X \subseteq R, \ |X| = d, \ X \notin \mathscr{F} \} \quad \text{and}$$

$$\overline{\mathscr{G}^*_{s,d}(\mathscr{F})} = \{X \colon X \subseteq R, \ |X| = s, \ X \notin \mathscr{G}^*_{s,d}(\mathscr{F}) \}.$$

If X is an arbitrary element of $\overline{\mathscr{G}^*_{s,d}(\mathscr{F})}$, then there are no k sets $X_1, X_2, ..., X_k \in \mathscr{F}$ such that X is the union of these X_i 's. Now we apply Theorem 3. At most $\binom{s-1}{d}$ d-element subsets of X belong to \mathscr{F} , i.e., at least $\binom{s}{d} - \binom{s-1}{d}$ d-element subsets of X belong to \mathscr{F} . On the other hand, each d-element subset of X is contained in exactly $\binom{r-d}{s-d}$ s-element subsets of X.

Hence,

and

$$\overline{|\mathscr{G}_{s,d}^*(\mathscr{F})|} \left({s \choose d} - {s-1 \choose d} \right) \leq |\overline{\mathscr{F}}| {r-d \choose s-d},
\left({r \choose s} - |\mathscr{G}_{s,d}^*(\mathscr{F})| \right) {s-1 \choose d-1} \leq {r-d \choose s-d} \left({r \choose d} - |\mathscr{F}| \right) \text{ and (1)}.$$

3.3. Let $d \ge \frac{r}{k}$. We assume the statement of Theorem 3 is false, i.e., there is a family $\mathscr{F} \in \mathfrak{G}_{d,d}(r,k)$ with $|\mathscr{F}| > {r-1 \choose d}$. Since $(k-1)d \ge r-d$ $\mathscr{G}^*_{r-d,d}(\mathscr{F})$ exists and we may use Corollary 2 and obtain

$$|\mathscr{G}_{r-d,d}^*(\mathscr{F})| \ge {r-1 \choose r-d}.$$

Consider $\mathscr{G}^{**}_{r-d,d}(\mathscr{F}) = \{X: R \setminus X \in \mathscr{G}^*_{r-d,d}(\mathscr{F})\}$. Since $\mathscr{G}^{**}_{r-d,d}(\mathscr{F}) \cap \mathscr{F} = \emptyset$ (otherwise there would exist k sets of \mathscr{F} with union R) we get the contradiction

$$\binom{r}{d} \ge |\mathcal{F}| + |\mathcal{G}^{**}_{r-d,d}(\mathcal{F})| > \binom{r-1}{d} + \binom{r-1}{d-1} = \binom{r}{d} \quad \blacksquare$$

4. Proof of theorem 1

Let $\frac{r-1}{2} > d \ge \frac{r-1}{k-1}$. Let \mathscr{F} be a maximal family of $\mathfrak{G}_{c,d}(r,k)$. Finally let p_i be the parameters of \mathscr{F} .

4.1. First we prove the statement of Theorem 1 for $d = \left| \frac{r-1}{k-1} \right|$ (]x[denotes the least integer not less than x). If $p_d > \frac{r-d-1}{r-1} \binom{r}{d}$, then the set $\mathscr{G}^*_{r-1,d}(\mathscr{F}_d)$ of subsets of R which are the union of at most k-1 sets of \mathscr{F}_d satisfies

$$|\mathscr{G}_{r-1,d}^*(\mathscr{F}_d)| \geq 1,$$

by Corollary 3. Without loss of generality let $R \setminus \{r\} \in \mathscr{G}^*_{r-1,d}(\mathscr{F}_d)$. Then there is no set belonging to \mathscr{F} which contains the element r. Otherwise there exist at most k sets having the union R. Thus, \mathscr{F} is a Sperner family on $R \setminus \{r\}$ and the LYM inequality yields the desired result immediately.

If
$$p_d \leq \frac{r-d-1}{r-1} \binom{r}{d}$$
, let us consider $\mathscr{GF} = \mathscr{F}_0 \cup \mathscr{F}_1$, where $\mathscr{F}_0 = \{X: X \in \mathscr{GF}, r \in X\}$, $\mathscr{F}_1 = \{X: X \in \mathscr{GF}, r \in X\}$.

 \mathcal{F}_0 is a Sperner family on $R \setminus \{r\}$ and by means of the LYM inequality we have

$$\frac{p_d}{\binom{r-1}{d}} + \frac{|\mathscr{F}_0| - p_d}{\binom{r-1}{d-1}} \leq 1,$$

and

$$|\mathcal{F}_0| \leq \binom{r-1}{d-1} + p_d \frac{r-2d}{r-d} \leq \binom{r-1}{d} - \frac{r-2d}{(r-d)^2} \binom{r-2}{d-1}.$$

 $\mathscr{F}_1' = \{X: X \cup \{r\} \in \mathscr{F}_1, r \notin X\}$ is a Sperner family on $R \setminus \{r\}$ with $|X| \le e - 1 = \left\lfloor \frac{r-1}{k} \right\rfloor - 1$ for all $X \in \mathscr{F}_1'$ which follows by Greene and Hilton's result. Thus,

$$|\mathscr{F}_1| = |\mathscr{F}_1'| \le {r-1 \choose e-1}.$$

The statement of the theorem follows if

$$\frac{r-2d}{(r-d)^2} \binom{r-2}{d-1} \ge \binom{r-1}{e-1},$$

which is equivalent to

$$Q(r,k) = \frac{r-2d}{(r-d)(r-1)} \prod_{i=0}^{d-e-1} \frac{r-d+1+i}{e+i} \ge 1.$$

Since

$$Q(r, k) \ge \frac{r - 2d}{(r - d)(r - 1)} \left(\frac{r - e}{d - 1}\right)^{d - e} \ge \frac{1}{3(r - 1)} \left(\frac{(k - 1)^2}{k}\right)^{\frac{r - 1}{k(k - 1)}}$$

we have $Q(r, k) \ge 1$ for sufficiently large r (e.g. for $r \ge 7k(k-1)+1$).

2. Now let $d>d_0=\left|\frac{r-1}{k-1}\right|$. We prove the statement of Theorem 1 by induction on d. If $\mathscr{F}\in\mathfrak{G}_{c,d}(r,k)$, then $\mathscr{F}'=(\mathscr{F}\setminus\mathscr{F}_d)\cup\Delta\mathscr{F}_d$ is a Sperner family and moreover it can be easily verified that $\mathscr{F}'\in\mathfrak{G}_{c,d-1}(r,k)$. By induction hypothesis

$$|\mathscr{F}'| \le \binom{r-1}{d-1}.$$

Theorem 3 yields $|\mathscr{F}_d| \leq {r-1 \choose d}$ and the results of section 2 imply

$$|\mathscr{F}| = |\mathscr{F}'| + |\mathscr{F}_d| - |\Delta\mathscr{F}_d| \leq \binom{r-1}{d-1} + |\mathscr{F}_d| \left\{ 1 - \frac{\binom{r-1}{d-1}}{\binom{r-1}{d}} \right\}$$

and, using $\binom{r-1}{d-1} < \binom{r-1}{d}$,

$$|\mathcal{F}| \leq {r-1 \choose d-1} + {r-1 \choose d} \left\{ 1 - \frac{{r-1 \choose d-1}}{{r-1 \choose d}} \right\} = {r-1 \choose d}.$$

Finally, we notice that $\{X: X \subseteq R, |X| = d, r \notin X\}$ belongs to $\mathfrak{G}_{c,d}(r,k)$ in all cases.

5. Proof of theorem 2

Let
$$\frac{r-1}{k-1} > d > \frac{r-1}{k} \ge c$$
.

Since $\mathscr{F}' = \{X: X \subseteq R, |X| = d, r \in X\} \in \mathfrak{G}_{c,d}(r,k)$ if $c \ge r - (k-1)d$ and $\mathscr{F}' \cup \{X: X \subseteq R, |X| = r - (k-1)d - 1, r \in X\} \in \mathfrak{G}_{c,d}(r,k)$ if $c \le r - (k-1)d - 1$ it is sufficient to prove for arbitrary $\mathscr{F} \in \mathfrak{G}_{c,d}(r,k)$:

$$|\mathcal{F}| \leq \begin{cases} \binom{r-1}{d} + \binom{r-1}{r-(k-1)d-2} & \text{if } c \leq r-(k-1)d-1, \\ \binom{r-1}{d} & \text{if } c \geq r-(k-1)d, \end{cases}$$

for $r \ge r_0(k, \varepsilon)$ and $d = \frac{r-1}{k-1+\varepsilon}$ with fixed ε , $0 < \varepsilon < 1$.

Let \mathscr{F} be an arbitrary family of $\mathfrak{G}_{c,d}(r,k)$. Consider \mathscr{GF} . \mathscr{GF} is a Sperner family but not necessarily a family of $\mathfrak{G}_{c,d}(r,k)$. We decompose \mathscr{F} in the subfamilies \mathscr{D} , \mathscr{E} and \mathscr{H} , defined as follows:

 \mathcal{D} is a subfamily with $\mathcal{S}\mathcal{D} = \{X: X \in \mathcal{SF}, r \notin X\},\$

$$\mathscr{E} = \{X \colon X \in \mathscr{F} \setminus \mathscr{D}, |X| \le r - (k-1)d - 1\},\$$

$$\mathcal{H} = \{X \colon X \in \mathcal{F} \setminus \mathcal{D}, |X| \ge r - (k-1)d\}.$$

5.1. \mathcal{SD} is a Sperner family on $R \setminus \{r\}$ and the LYM inequality yields

$$\sum_{X \in \mathscr{S}_{\mathscr{D}}} \frac{1}{\binom{r-1}{|X|}} \le 1,$$

$$\frac{p_d}{r-1} + \frac{|\mathscr{S}_{\mathscr{D}}| - p_d}{(r-1)} \le 1$$

$$\frac{p_d}{\binom{r-1}{d}} + \frac{|\mathcal{S}\mathcal{D}| - p_d}{\binom{r-1}{d-1}} \le 1$$

and

$$|\mathcal{D}| = |\mathcal{S}\mathcal{D}| \leq \frac{d}{r-d} {r-1 \choose d} + \frac{r-2d}{r-d} p_d.$$

5.2. If $c \ge r - (k-1)d$, then $|\mathscr{E}| = 0$. If $c \le r - (k-1)d - 1$, then

$$\mathcal{J} = \{X: X \cup \{r\} \in \mathcal{S}(\mathcal{D} \cup \mathcal{E}), r \notin X\}$$

is a Sperner family on $R \setminus \{r\}$ with cardinality $|\mathscr{E}|$ and with $|X| \le r - (k-1)d - 2$ for all $X \in \mathscr{J}$. The LYM inequality yields

$$\sum_{X \in \mathcal{J}} \frac{1}{\binom{r-1}{|X|}} \leq 1,$$

and

$$|\mathscr{E}| = |\mathscr{J}| \le {r-1 \choose r-(k-1)d-2}.$$

5.3. If $\min_{X \in \mathcal{D}} |X| \le r - (k-1)d - 1$, then $|\mathcal{H}| = 0$ and the statement follows immediately. Let $|X| \ge r - (k-1)d$ for all $X \in \mathcal{D}$.

diately. Let $|X| \ge r - (k-1)d$ for all $X \in \mathcal{D}$. Let $\mathcal{G}^*_{(k-1)d,d}(\mathcal{F}_d)$ be the set of all (k-1)d-element subsets of R which are the union of at most (k-1) sets of \mathcal{F}_d . Furthermore, let

$$\mathscr{G}_{(k-1)d,d}^{**}(\mathscr{F}_d) = \{X: \ R \setminus X \in \mathscr{G}_{(k-1)d,d}^*(\mathscr{F}_d)\}.$$

Then $\mathcal{D} \cup \mathcal{H} \cup \mathcal{G}^{**}_{(k-1)d,d}(\mathcal{F}_d)$ is a Sperner family too. Clearly, $\mathcal{D} \cup \mathcal{H}$ and $\mathcal{G}^{**}_{(k-1)d,d}(\mathcal{F}_d)$ are Sperner families themselves. We notice that

$$|X| \ge r - (k-1)d$$
 for all $X \in \mathcal{D} \cup \mathcal{H}$ and

$$|X| = r - (k-1)d$$
 for all $X \in \mathcal{G}^{**}_{(k-1)d,d}(\mathcal{F}_d)$.

We have only to show that there is no pair (Y, Z) with $Y \in \mathcal{G}_{(k-1)d,d}^{**}(\mathcal{F}_d)$ and $Z \in \mathcal{D} \cup \mathcal{H}$ satisfying $Y \subseteq Z$. Assume the contrary. Then there are k-1 sets X_1, \ldots, X_{k-1} belonging to \mathcal{F}_d satisfying $R \setminus Y = \bigcup_{i=1}^{k-1} X_i$. Hence, X_1, \ldots, X_{k-1} and Z, all sets belonging to \mathcal{F} , have the union R, in contradiction to our assumption.

$$\mathscr{J}' = \{X: X \cup \{r\} \in \mathscr{S}(\mathscr{G} \cup \mathscr{H} \cup \mathscr{G}^{**}_{(k-1)d,d}(\mathscr{F}_d)), r \notin X\}$$

is a Sperner family on $R \setminus \{r\}$. If q_i , q'_i and q''_i are the parameters of the families \mathscr{J}' , \mathscr{H} and $\mathscr{G}^{**}_{(k-1)d,d}(\mathscr{F}_d)$, respectively, then $q_i = q'_{i+1} + q''_{i+1}$. By Greene and Hilton's result (see section 2) we know that the cardinality of the sets of \mathscr{J}' are upperbounded by $e = \left[\frac{r-1}{k}\right] - 1$. The LYM inequality, Theorem 4 and simple estimations of binomial coefficients yield

$$\sum_{X\in\mathscr{J}}\frac{1}{\binom{r-1}{|X|}}\leq 1,$$

$$\frac{|\mathcal{H}|}{\binom{r-1}{e-1}} + \frac{|\mathcal{G}^{**}_{(k-1)d,d}(\mathcal{F}_d)|}{\binom{r-1}{r-(k-1)d-1}} \le 1$$

and

$$|\mathcal{H}| \leq \binom{r-1}{e-1} \left\{ 1 - \frac{(k-1)d}{r-(k-1)d} \left(\frac{r-d}{d} \frac{|\mathcal{F}_d|}{\binom{r-1}{d}} + \frac{r}{(k-1)d} - \frac{r}{d} \right) \right\}.$$

Thus, $|\mathcal{F}| = |\mathcal{Q}| + |\mathcal{E}| + |\mathcal{H}| \le f(p_d) + |\mathcal{E}|$, where

$$f(p_d) = \frac{d}{r - d} \binom{r - 1}{d} + \frac{r - 2d}{r - d} p_d + \frac{r - 1}{e - 1} \left\{ 1 - \frac{(k - 1)d}{r - (k - 1)d} \left(\frac{r - d}{d} \frac{p_d}{\binom{r - 1}{d}} + \frac{r}{(k - 1)d} - \frac{r}{d} \right) \right\}.$$

Since 5.2. it is sufficient to prove $f(p_d) \le \binom{r-1}{d}$ for all p_d with $0 \le p_d \le \binom{r-1}{d}$ (see Theorem 3). $p_d = \binom{r-1}{d}$ implies $f(p_d) = \binom{r-1}{d}$. $f(p_d)$ is a linear function in p_d . Hence, it is sufficient to show that the factor of p_d is nonnegative, i.e.

$$\frac{r-2d}{r-d} \ge \frac{(k-1)d}{r-(k-1)d} \frac{r-d}{d} \frac{\binom{r-1}{e-1}}{\binom{r-1}{d}},$$

or equivalently

$$Q(r, k, d) = \frac{(r-2d)(r-(k-1)d)}{(r-d)^2(k-1)} \frac{\binom{r-1}{d}}{\binom{r-1}{e-1}} \ge 1.$$

Then

$$Q(r, k, d) = \frac{(r-2d)(r-(k-1)d)}{(r-d)^2(k-1)} \prod_{i=0}^{d-e} \frac{r-d+i}{e+i} \ge$$

$$\geq \frac{1}{4r} \left(\frac{(k-1)^2}{k} \right)^{\frac{1-\varepsilon}{k^2}(r-1)} \geq \frac{1}{4r} (k-2)^{(1-\varepsilon)\frac{r-1}{k^2}}$$

and $Q(r, k, d) \ge 1$ for sufficiently large r (e.g. $r \ge \left(\frac{5k^2}{1-\epsilon}\right)^2 + 1$, since $\frac{r-1}{r} \ge \frac{4}{5}$ and $2^x > \frac{x^2}{5}$ for nonnegative real numbers we obtain

$$Q(r,k,d) \ge \frac{1}{4r} 2^{(1-\epsilon)\frac{r-1}{k^2}} > \frac{1}{20r} \left((1-\epsilon)\frac{r-1}{k^2} \right)^2 \ge \frac{1}{25} (r-1) \left(\frac{1-\epsilon}{k^2} \right)^2 \ge 1 \right). \quad \blacksquare$$

6. Concluding remarks

6.1. In [11], where the author discussed the case k=3, our method was presented in a more refined version. The proofs are complicated and extensive there. Using this refined method our results in Theorem 1 and 2 could be improved (i.e. the r_0 's) surely, but the proof would be much more laborious than that of [11].

A very important structural assertion on Sperner families is that every Sperner family has a canonical Sperner family with the same parameters (see section 2). If $\mathscr{F} \in \mathfrak{G}_{c,d}(r,k)$, then \mathscr{SF} does not belong to $\mathfrak{G}_{c,d}(r,k)$ in general. See e.g. the case k=3. Let $r \ge 7$. Let \mathscr{F} consist of the sets $\{1, 2, ..., r-3\}$, $\{i, r-2\}$, $\{i, r-1\}$ and $\{i, r\}$ with i=1, 2, ..., r-3. Then $\mathscr{F} \in \mathfrak{G}_{0,r}(r,3)$. \mathscr{SF} consists of the sets

$$\{1, 2, ..., r-3\},\$$

 $\{i, r-2\}$ $(i = 1, 2, ..., r-3),\$
 $\{i, r-1\}$ $(i = 1, 2, ..., r-2)$ and $\{i, r\}$ $(i = 1, 2, ..., r-4).$

The 3 sets $\{1, 2, ..., r-3\}$, $\{r-2, r-1\}$, and $\{1, r\}$, all sets of \mathscr{GF} , have the union R. It remains an open

Problem. Under what conditions can be stated that $\mathcal{F} \in \mathcal{G}_{c,d}(r,k)$ implies $\mathcal{GF} \in \mathcal{G}_{c,d}(r,k)$?

6.2. Using Corollary 3 we are able to find, for small r, a new upper bound for the maximum cardinality of the k-uniform, not l-intersecting families. More precisely, let n(r, k, l) denote the maximum size of a family of k-element subsets of R, |R|=r, such that $|X \cap Y| \neq l$ for all $X, Y \in \mathcal{F}$. If $k \geq l$ or 2k-l>r, then obviously $n(r, k, l) = {r \choose k}$. Let k < l and $r \geq 2k-l$. As special cases, Ray-Chaudhuri and Wilson [18] proved

(2)
$$n(r, k, l) \leq \binom{r}{k-1},$$

and Deza, Erdős, Frankl [3] resp. Frankl [6], [7] determined, for $r > r_0(k)$ better and best upper bounds for n(r, k, l). n(r, k, 0) is determined in the Erdős—Ko—Rado theorem [4], while the extremal families are described in Hilton and Milner [13].

Theorem 5. (i) If
$$r \ge 2k \ge 2$$
 then $n(r, k, 0) = \binom{r-1}{k-1}$.

- (ii) F is a maximal if and only if
 - a) $r \neq 2k$: \mathcal{F} consists of all k-element subsets of R containing a fixed element $v \in R$.
 - b) r=2k: \mathscr{F} contains exactly one set of every pair of complementary sets.

We are able to improve (2) for small r, namely for

$$2k-l \leq r < 3k+l-1-\frac{l^2}{k-l}$$
.

Theorem 6. (i) Let $k>l\ge 1$ and $r\ge 2k-l$, then

(3)
$$n(r, k, l) \leq \frac{k-l}{2k-l} {r \choose k}.$$

(ii) If r=2k-l then (3) is sharp. \mathcal{F} is maximal if and only if \mathcal{F} consists of all k-element subsets of $R-\{v\}$, for some fixed $v \in R$.

Proof. Let \mathscr{F} be a maximal k-uniform, not l-intersecting family, $|\mathscr{F}| = n(r, k, l)$, $k > l \ge 1$, $r \ge 2k - l$.

- (i) The condition $|X \cap Y| \neq l$ means $\mathscr{G}^*_{2k-l,k}(\mathscr{F}) = \emptyset$. Corollary 3 implies (3).
- (ii) Let r=2k-l. Consider $\overline{\mathscr{F}} = \{X: R \setminus X \in \mathscr{F}\}$. Obviously, $\overline{\mathscr{F}}$ is an (r-k)-uniform, not 0-intersecting family. Also Theorem 5 yields

$$|\mathcal{F}| = |\overline{\mathcal{F}}| \le \binom{r-1}{r-k-1} = \binom{r-1}{k}.$$

Since $r=2k-l\neq 2k$, the maximal $\overline{\mathscr{F}}$'s are described in Theorem 5 (ii)a. The corresponding \mathscr{F} 's are the desired ones. Finally we note that $\frac{k-l}{2k-l}\binom{r}{k} < \binom{r}{k-1}$ if and only if $r<3k+l-1-\frac{l^2}{k-l}$.

References

- [1] G. F. CLEMENTS, A minimization problem concerning subsets, *Discrete Math.* 4 (1973), 123—128.
- [2] D. E. DAYKIN, JEAN GODFREY and A. J. W. HILTON, Existence theorems for Sperner families, J. Combin. Theory (A) 17 (1974), 245—251.
- [3] M. DEZA, P. ERDŐS and P. FRANKL, Intersection properties of systems of finite sets, *Proc. London Math. Soc.* (3) 36 (1978), 369—384.
- [4] P. ERDŐS, CHAO KO and R. RADO, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961), 313—320.
- [5] P. FRANKL, On Sperner families satisfying an additional condition, J. Combin. Theory (A) 20 (1976), 1—11.
- [6] P. FRANKL, Extremal problems and coverings of the space, European J. of Combinatorics 1 (1980), 101—106.
- [7] P. FRANKL, Families of finite sets with prescribed cardinalities for pairwise intersections, Acta Math. Acad. Hungar. 35 (1980), 351—360.
- [8] C. Greene and A. J. W. Hilton, Some results on Sperner families, J. Combin. Theory (A), 26 (1979), 202—209.
- [9] H.-D. O. F. Gronau, On Sperner families in which no k sets have an empty intersection, J. Combin. Theory (A), 28 (1980), 54—63.

- [10] H.-D. O. F. Gronau. On Sperner families in which no 3 sets have an empty intersection, Acta Cybernetica, 4 (1978), 213—220.
- [11] H.-D. O. F. GRONAU. On Sperner families in which no k sets have an empty intersection II, J. Combin. Theory (A) 30 (1981), 298—316.
- [12] H.-D. O. F. GRONAU, Sperner type theorems and complexity of minimal disjunctive normal forms of monotone Boolean function. *Period. Math. Hung.*, 12 (4) (1981) 267—282.
- [13] A. J. W. HILTON and E. C. MILNER, Some intersection theorems for system of finite sets, Quart. J. Math. Oxford 2, 18 (1967), 369—384.
- [14] G. KATONA, A theorem for finite sets, Theory of Graphs, Proc. Collog., Tihany. Hungary (1966), 187—207.
- [15] J. B. KRUSKAL, The number of simplices in a complex, in: Mathematical optimization techniques, Univ. of California Press, Berkeley and Los Angeles, 1963, 251—278.
- [16] D. LUBELL, A short proof of Sperner's lemma, J. Combin. Theory 1 (1966), 299.
- [17] L. D. Meshalkin, A generalization of Sperner's Theorem on the set of subsets of a finite set. Teor. Verojatnost. i Primenen. 8 (1963), 219—220 (in Russian).
- [18] D. K. RAY-CHAUDHURI and R. M. WILSON, On t-designs, Osaku J. Math. 12 (1975), 737—744.
- [19] K. Yamamoto, Logarithmic order of free distributive lattices, J. Math. Soc. Japan 6 (1954), 343-353.

H.-D. O. F. Gronau

Wilhem-Pieck-Universität 2500 Rostock, DDR